A Better than "Best Possible" Algorithm to Edge Color Multigraphs

نویسندگان

  • Dorit S. Hochbaum
  • Takao Nishizeki
  • David B. Shmoys
چکیده

By a result of Holyer, unless P = NP, there does not exist a polynomial-time approximation algorithm to edge color a multigraph that always uses fewer than (f) x’ colors, where x’ is the optimal number of colors. This makes it appear that finding provably good edge colorings is extremely difficult. However, in this paper we present an algorithm to find an edge coloring of a multigraph that never uses morethan [ix’+tj colors. In addition, if x’ 2 1 f A + i] then the algorithm optimal/y colors the graph in polynomial time. Furthermore, this algorithm never uses more than (f)x’ colors and runs in O(lEKlVl + A)) time, where E is the set of edges, and P is the set of vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-coloring series-parallel multigraphs

We give a simpler proof of Seymour’s Theorem on edge-coloring series-parallel multigraphs and derive a linear-time algorithm to check whether a given series-parallel multigraph can be colored with a given number of colors.

متن کامل

Approximating Maximum Edge Coloring in Multigraphs

We study the complexity of the following problem that we call Max edge t-coloring : given a multigraph G and a parameter t, color as many edges as possible using t colors, such that no two adjacent edges are colored with the same color. (Equivalently, find the largest edge induced subgraph of G that has chromatic index at most t). We show that for every fixed t ≥ 2 there is some > 0 such that i...

متن کامل

Edge-Coloring Bipartite Multigraphs to Select Network Paths

We consider the idea of using a centralized controller to schedule network traffic within a datacenter and implement an algorithm that edge-colors bipartite multigraphs to select the paths that packets should take through the network. We implement three different data structures to represent the bipartite graphs: a matrix data structure, an adjacency list data structure, and an adjacency list d...

متن کامل

On Interval Non-Edge-Colorable Eulerian Multigraphs

An edge-coloring of a multigraph G with colors 1, . . . , t is called an interval t-coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In this note, we show that all Eulerian multigraphs with an odd number of edges have no interval coloring. We also give some methods for constructing of interval non-edge-colorable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Algorithms

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1986